Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats.

نویسندگان

  • H Johshita
  • T Asano
  • T Hanamura
  • K Takakura
چکیده

Using the middle cerebral artery occlusion model in cats, we evaluated the possible role of the cyclooxygenase pathway in alterations of local cerebral blood flow and the development of cortical edema following prolonged ischemia or recirculation. We divided 57 cats into three groups, and each cat received saline (control), indomethacin, or the free radical scavenger ONO-3144. Each group was subdivided into prolonged ischemia (4 hours of occlusion: PI) and recirculation (2 hours of occlusion followed by 2 hours of recirculation: RC) subgroups. We compared local cerebral blood flow and cortical specific gravity between the PI and RC subgroups of the control and drug-treated groups. In the PI subgroup, indomethacin did not influence the time course of local cerebral blood flow but significantly worsened the decrease in cortical specific gravity. On the other hand, indomethacin significantly improved postischemic hypoperfusion and ameliorated the decrease in cortical specific gravity in the RC subgroup. The effects of ONO-3144 were similar to those of indomethacin, except that ONO-3144 did not affect cortical specific gravity in the PI subgroup. Indomethacin inhibits cyclooxygenase activity, whereas ONO-3144 scavenges the oxygen-centered radical released in the conversion of prostaglandin G2 to prostaglandin H2. Thus, prostaglandins do not seem to play a major role in the occurrence of brain edema due to prolonged regional ischemia. By contrast, oxygen-centered radicals released from the cyclooxygenase pathway appear to be at least partially responsible for the occurrence of recirculation-induced edema and postischemic hypoperfusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

بررسی اثر انسداد گذرای شریان مرکزی در کاهش آسیب‌های مغزی در مدل سکته‌ی مغزی رت

Background and Objective: Recent studies suggest that sub-lethal ischemia protect the brain from subsequent ischemic injuries. This study was an effort to identify and shed light on the nature of changes in the blood brain barrier permeability and brain edema. Materials and Methods: Rats were divided into four main experimental groups, each of 21 animals. The first group acted as a model of isc...

متن کامل

Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger.

Regional changes in the amount of free fatty acids, polyphosphoinositides, and water content in the cerebral cortex were examined using a middle cerebral artery occlusion model of rats. The amount of various free fatty acids increased as polyphosphoinositides decreased during 3 and 6 hours of ischemia in the occluded middle cerebral artery territory. After 3 hours of reperfusion following 3 hou...

متن کامل

A Lumped Parameter Method to Calculate the Effect of Internal Carotid Artery Occlusion on Anterior Cerebral Artery Pressure Waveform

Background and Objective: Numerical modeling of biological structures would be very helpful tool to analyze hundreds of human body phenomena and also diseases diagnosis. One physiologic phenomenon is blood circulatory system and heart hemodynamic performance that can be simulated by utilizing lumped method. In this study, we can predict hemodynamic behavior of one artery of circulatory system (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 1989